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Probability Space of Wave Functions

Silvin Guiasu’
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It is well known that in quantum mechanics, when the mean value of an
observable is given, entropy maximization (von Neumann, Born, Jaynes) can
be successfully applied for constructing a probability distribution on the set of
possible values of that observable. In this paper, the entropy maximization
technique is extended to the complex domain in order to construct an unbiased
probability measure on the set of all wave functions. In particular, a justification
and a generalization of the Wiener-Siegel probability distribution of Gaussian
type in the differential space of wave functions are given.

1. INTRODUCTION

In classical statistical mechanics the possible states are points in a
Euclidean space, the phase space, and when the exact state is not known,
a probability measure is constructed on the Borel-measurable set of states.
In quantum mechanics, the state of the system is a wave function with
complex coefficients, which, according to Born, will in general permit
statements as to the probability of finding different values of some quantities
of interest. We may encounter situations where we do not know the precise
state of the system, namely its wave function at time t,. In such a case, as
in classical statistical mechanics, we have to organize the state space, i.e.,
the space of wave functions, as a probability space and make probabilistic
predictions on the possible wave functions, which themselves allow only
probabilistic interpretations. There is here a double intervention of probabil-
ity. As noticed by Messiah (1969), the so-called density matrix introduced
by von Neumann (1932) in order to solve this problem plays a role only
somewhat similar to that of the probability density function from classical
statistical mechanics. On the other hand, in a series of papers Wiener and
Siegel (1953, 1955, 1966), inspired by the Brownian motion stochastic
process, postulated a probability distribution of Gaussian type on the set
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of wave functions, in an attempt to build up a quantum statistical mechanics
closer to the approach used in classical statistical mechanics for organizing
the whole state space as a probability space.

The aim of this paper is to construct an unbiased probability measure
on the space of wave functions subject to given data, available at the
macroscopic scale, by extending the use of entropy maximization to the
complex domain. As is well known, the entropy maximization technique
allows us, in general, to construct the most random or, better, the most
unbiased probability distribution compatible with given mean values of
random variables. After the major contributions of von Neumann (1932),
Born (1969), and Jaynes (1957) in this area, many applications of this
technique have been made in recent years, as can be seen, for instance, in
Levine and Tribus (1979) or Smith and Grandy (1985). Generally, these
contributions have focused mainly on how to construct a probability distri-
bution on the set of possible values of one or several observables of a
quantum system rather than on the set of wave functions that are the possible
states of the quantum system.

Let {x;} be the complex components of an arbitrary wave function ¢
with respect to a complete orthonormal set of eigenfunctions {¢,} corre-
sponding to the eigenvalues {u,} of an observable U. We put x;, = x; ; + ix;, =
r, exp(i6, ). By performing measurements at the macroscopic scale we can
generally get only mean values of random variables. In Section 2, supposing
that we know the mean probability |c.|* that the observable U takes on the
value u,, the principle of maximum entropy is successively applied for
constructing the most unbiased probability distribution on the possible
values of |x.[°, 7, 0k, and of the pairs (ry, 6;) and (X, Xx2). These results
are used in Section 3 for inducing a probability measure on the space of
complex sequences {x,.}. Section 4 deals with the common case when the
only available information is supplied by the mean value of the observable
U. An example involving the one-dimensional harmonic oscillator is dis-
cussed. Once the space of wave functions is organized as a probability
space, in Section 5, the mean and the variance of the mean value of an
observable are obtained. In Section 6, bounds for the random norm of ¢
are given. In Section 7, connections are made between the present approach
and the statistical ensembles from Wiener and Siegel’s differential space.
The polychotomic algorithm of Wiener and Siegel is obtained in a more
general context. The last section contains conclusions.

2. SOME USEFUL PROBABILITY DISTRIBUTIONS

Before applying entropic optimization techniques in quantum statistical
mechanics let us make some preliminary remarks. If {¢, k=0,1,...}is a
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complete orthonormal set of eigenfunctions corresponding to the eigen-
values {u,, k=0,1,...} of the observable U and if the normalized wave
function ¢ is written as

w:%ck(bk (1)

then the expected value of U corresponding to the state  has the form

(UH¢ =§ |l

which entitles us to interpret |c,|* as being the probability thai the observable
U takes on the value u,. Suppose that at the time of preparation f, the
dynamical state of the system is known incompletely and we assign to it a
statistical mixture of a finite or countable set of wave functions {¢;,j=
0,1,...}, not necessarily normalized, with the corresponding statistical
weights {p;,j=0, 1, ...} such that

pj>0(j=0919"')’ ZP]ZI
J

Taking the eigenfunctions {¢,, k=0,1,...} of the observable U as
basis, we have

¥ = > kP

k

and, if {-|-) denotes the inner product, let us define

CAED) Pjﬁkf‘ (2)
i <*//J|¢’]>
In particular, the set of wave functions {¢;,j=0,1,...} may be just
{¢x, k=0,1,...}, in which case ¢;;=1 and ¢;;,, =0 if j and k are different,
which implies ’
leel = pi

Let us take an arbitrary wave function

¢=%xkd>k=§ 1. exp(ify) i (3)

where
r=lxJ] and 6, = arg x;

Of course, the numbers {|c,|’} do not determine the state of the system at
time f,. They can, however, determine a probability distribution on the
state space of the system. By performing measurements at the macroscopic
scale wa can generally get only mean values of random variables. Let us
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look at the number |c,|* as being the average (or expected) value of |x;|’
or r. Using the principle of maximum entropy (PME) we can construct
the most random (the most unbiased, the most uniform) probability distribu-
tion on the possible values of |x.|* subject to the expected value [c,[*. After
that we obtain successively the probability distribution on the values taken
on by the module r;, the argument 6, the pair (ry, 6,), and the pair (x;, Xx,)
of the real and imaginary components of x; (x, = X, ; +ix;»). From here on
we apply the standard technique for constructing the product measure on
the set of sequences {(x; |, X; ), (%21, X22), - . . }, each such sequence corre-
sponding to a well-defined wave function (state) of the system,

R ZZkZ (X1 + ix3c2) e

The following propositions will realize, step by step, this program.

Proposition 1. The maximum entropy probability distribution on the
possible values of the square of the module r; compatible with the expected
value |¢,* has the exponential probability density

exp(—y/|al)/|ef> if y>0
0 elsewhere

fk(y>={ @)

The mean of this probability distribution is |¢,|* and the variance [c; .

Proof. The computation is quite standard. We want to solve the convex
nonlinear program with two equality constraints:

mng[*L f(¥) Infi(y) dy] (5)

subject to
.L Sfily) dy=1 (6)
L () dy = e (7

Let H(f.) be the entropy of the probability density £, whose expression
is given in (5) and @ and B be Lagrange multipliers corresponding to the
constraints (6) and (7). Taylor’s formula tells us that for any ¢ >0 there is
7, depending on ¢, between 1 and ¢, such that

G)=tlnt=0-1)+{—-1)%/Q27)
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Using this formula, we get
~H(f)+a-1+Blef
+oo
= J exp(—a — By) G[fi(y) exp(a + By)] dy

0

= J exp(—a —By) [fi(y) exp(a+By)—1] dy

0
+oo .
=1—J exp(—a —By) dy : (8)
0
with equality if and only if
fi(y)=exp(—a—By), y>0 9

in which case the lower bound in (8) is equal to zero. Introducing (9) into
(6) and (7), after an elementary integration we obtain (4).

Proposition 2. The values taken on by the module r; are distributed
according to the Weibull probability density

2z exp(—z*/|c[)/ || if z>0
g(z) = {

10
0 elsewhere (10)
Its mean is 7'/%|¢,|/2 and the variance (1—7/4)|c.[”.

Proof. As ri is distributed according to (4), we obtain for r, the
probability density

gx(2) =fi(2%) - 2z=2z exp(—z*/|a[)/|af’,  2>0
which is the Weibull distribution
afz? 'exp(—az®), if z>0
g(z)= {0 elsewhere
with the parameters @ = 1/|¢,|* and B =2. Its mean is
w=a VPT(1+1/B8)=n""?|c|/2=0.8862|c|
and the variance
o’=a YP[T(1+2/B)-T*(1+1/B8)]=(1—n/4)|c[*=0.2146|c,]?

Proposition 3. The maximum entropy probability distribution on the
possible values of the argument 6, has the uniform probability density
1/Q27) O0<s=<27
0 elsewhere

hk(S)={ (11)

Its mean is 7 and the variance is equal to /3.
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Proof. We can follow the same technique as in the proof of Proposition
1 in order to maximize H(h,) subject to the only constraint

2ar
J h(s)ds=1
Q

and we obtain (11). The mean and the variance may be calculated in the
usual way.

Proposition 4. Since the module r, and the argument 8, are indepen-
dent, their joint probability density is
&z, 5) = gi(z) i (s)
{z exp(—z°/|e )/ mlal>  for z>0, 0=s=<2x7
0 elsewhere

(12)

Proposition 5. Each component of the independent pair (x;, Xx2),
where x, = x;, + ix;, = r, €xp(i6,), is normally distributed with the mean
zero and the variance |c.[*/2, its probability density being

"lk(v)=CXP(“’-’2/|Ck|2)/7TI/2le’ (13)

Proof. Let us denote by {, the joint probability density of the pair
(X1 5 xk,z), where

Xp = Xy + x5 = 1y exp(i6y)
Since
Xj1 = Iy COS Oy, Xi 2 = Iy sin 6y
taking (12) into account, we have
Si(xicr s Xuc2)

= &, 09 (1, Xic2)/3(re, 6:)) 7

=& (e, )/ e

=exp(—ri/|a)/ =l

= exp[—(xk: +x%2)/ el 7le?

= [exp(—xi1/|el?)/ 7| el Hexp(=xE2)/ |el)/ w2 cil] (14)

which is the product of two normal marginal probability distributions
N(0, e’/ 2).

Remark. When |¢J*=1 we obtain
fey)=exp(=y) (y>0);  gz)=2zexp(-z") (2>0)
me(v) = exp(~v?)/ '/
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the joint probability density {; of the pair (x,, x,,) being the product of
two normal distributions N (0, 3). In such a case, the joint probability density

zexp(—=z°)/m if z>0, 0=s<27w
§k(za S) =
0 elsewhere
for (r, 6;), or the joint probability density
G0y, v2) = eXp[“(Uf"‘ v3)l/ ™

for (xx,, xx2) characterizes the probability distribution of the possible states
of the system having the form

¥ =x. P
where

X = X+ Xy o = 1 exp(ify)

3. A PROBABILITY MEASURE ON THE STATE SPACE
Let us introduce the countable set
A={(k1),(k2);k=0,1,2,...}

and the collection R* of all real-valued functions w(a), « € A, defined on

.....

sequence {a,, ..., a,} of distinct elements of A defined by
Pal ..... an(w)z[w(al)s"',a)(an)]ERn

and let us introduce the o-field of all Borel cylinders in R* with index
{als"'9an}’

..........

.....

the form

we put
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where xj is the indicator of the set B and for a,=(k, L), ..., a,=(k,, L)
and v=(v,,...,1,), we have, for any /;€{0, 1},

Tera®) = 1m0 =7+l exp (= £ @il (19
j= i=1

The set function # is well defined on I and, according to the Kol-
mogorov extension theorem, 1 can be extended uniquely to be a probability
measure on the o-field o(I) generated by L

On the probability space {R* o(I), n} we can define a system of
random variables

X={X(a, ), acA}
by
X(a, w)=ow(a) for weR*
Then, for {ay,...,a,} < A and BeB" we have
n({w; 0 eR*, [X (a1, @),..., X(a,, @)]€ B})
=n({w; 0 eR% [0(a)),. .., w(a,)]€B})

.....

so that X is a Gaussian system of independent random variables.
The set R* is larger than the set of wave functions. An element

— A
w= (xO,la X0,25 X1,15 X1,25 -« + 5 Xk 15 Xk25 - - JER (16)
corresponds to the state

¥ 2%: (xk,l + ixk,2)¢k

if and only if

%|xk|2=§ri<+oo 17)

where
Xp = X1+ ix = 1y €xp(i6y)

We prefer, however, to look at any sequence (16) as representing a
possible (extended) state of the system. Writing, for brevity,

_ A
(//—(xo,l, X025 X1,15 X1,25+ +» 5 Xk 15 Xi25 -« ¢ JeR
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we denote the integral of a function f(y) with respect to the measure 7,
namely

LAf(w) dn(9)
by E(f(4))-

Of course, not always does

Yl =1
k

but according to the next proposition, this equality is true in the mean.
Proposition 6.

E(yly)) =1 (18)
Proof. Using (13), we get

E((yly) =J Ayl de(y)

+oo ff +oo
=X J. J (xi,l'*'xi,z)
k

x exp[—(xi:+xi2)/ e[l wlenf dxi, dxic;
= Z |ck'2 =1
k
Remark. If we denote
0(z)= J exp(—x*/2)/(2m)"? dz
1]

then the probability of having a state belonging to the set
{l/'; ¥ :Ek: (X1 + X2 2) bre, Gy =X, < by; (j=1,2), for any k}

is equal to
1,:[ H [@(21/2bk),-/’ck|) - @(21/2au/|ck‘)]

Following the steps mentioned above, we organize the state space as
a probability space at time f,. On the other hand, the Schrodinger equation
induces a strictly deterministic flow S(t,, t) on the state space R*. Supposing
that the transformation S(,, t) is o(I)-measurable, the initial probability
space {R*, o(I), n} at time t,, is transformed into the new probability space
{R* o(I), nS (1, 1)} at time t (> o).
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4. THE CASE WHEN THE MEAN VALUE OF AN OBSERVABLE
IS GIVEN

The above considerations are based on the fact that initially we know,
from observations, the values of |¢,[* (k=0, 1,...). These values have been
interpreted as the mean values of the probabilities that the observable U
takes on the eigenvalues u;, (k=0,1,...) corresponding to the eigenfunc-
tions ¢, (k=0,1,...). Such an interpretation is in accordance both with
statistical mechanics and with statistical inference, which have taught us
that the only way of coping with random events and fluctuations is to start
from mean values estimated at the macroscopic level. Sometimes the num-
bers |c,|> cannot be directly estimated and the only available information
is given by the mean value of the observable. Suppose that at time ¢, we
know the mean value (U) of the observable U. Practically, we measure the
value taken on by U for a set of indentical systems and we use these
observations in order to estimate the mean value (U) of U, getting generally
a confidence interval for (U), or testing a statistical hypothesis about (U).
(This is the simplest strategy to follow; in order to estimate the mean
probabilities |c.[]>, k=0, 1,..., using the relative frequencies of the values
u, k=0,1,..., taken on by the observable U for a set of identical systems,
generally we need much more observations than for estimating the mean
value (U) of /) In such a case, since

<U>:%uklck|2 (19)

there are many mean probability distributions {|c,|>, k=0, 1, ...} compatible
with the given mean value (U). In order to make a choice, a natural strategy
would be to select from this set of feasible mean probability distributions
the most random one (the most unbiased one), treating the possible values
of U as uniformly as possible subject to the constraint (19). Therefore, we
can apply the standard form of the principle of maximum entropy, used
by von Neumann (1932), Born (1969), and Jaynes (1957), in order to
determine the mean probability distribution {|¢,|*, k=0, 1, ...} that maxim-
izes the entropy

H(ef) = -5 o In e,

subject to

Yl =1
k

%uk|cklz=<U>
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Using the same steps as in the proof of Proposition 1, we obtain the
known solution (Gibbs’s discrete canonical distribution)

e = exp(—Bu)/®(B),  k=0,1,... (20)

where

®(8) =% exp(—Buy)

with B satisfying the equation
@'(B)/®(B)=—(U) (21)
In the particular, but important, case when
U, = ug+ ku, k=0,1,..._
equation (21) can be easily solved and we get
lee? = u({UY = up)*/ ((UY + u— up)**?, k=0,1,...

and this expression has to be introduced into the formulas (4)-(15).
For a one-dimensional harmonic oscillator, for instance, if U is the
energy of the oscillator, we have

Uy =1hv, u=hv

where v is the frequency of the oscillator and & is the Planck constant. In
such a case

lee = v ((UY — hu/ )%/ (UY+ ho/2)* k=0,1,...

Replacing these values in (12) and (14), we get the maximum entropy
probability distribution of the pairs {(r, 6;), k=0, 1,...} and the corre-
sponding probability distribution of the pairs {(xy;, X,), (k=0,1,...)} of
the coefficients

X = I Xp{ifi} = Xp 1 + iXp
of the possible states
¥ :%: Xy
where {¢,, k=0, 1,...} are the eigenfunctions of the energy of the harmonic
oscillator
&1 (t) = N exp(—at?/2)H(a'/?t)
where
a=4m*vm/h, Ne=[(a/m)"?/(2*N]?

m is the mass of the oscillator, and H,, denotes the Hermite polynomials.
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5. THE MEAN OF THE MEAN VALUE OF AN OBSERVABLE

Let V be a Hermitic operator corresponding to an observable denoted
by the same letter. The mean value of V corresponding to the state ¢ is

(Vg = (0| Vi) /(o )

In our approach, since ¢ is the generic element of a probability space, the
mean (V) becomes a random variable. For any subset Be I of states we
define the mean value of V corresponding to the subset B, or on B, as being

(V)(B) =E(| Vi)xa(¥))/EC|¥)xs(¥))

if the two integrals exist. In particular, if B = R*, then we obtain the following
result.

Proposition 7. The mean value of V on R* (the mean of the mean) is

(V)= (VIR =X (el Véularl” (22)
Proof. Taking (18) into account, we get

(V)=(V)(R*) =E((y| W) = LA | Vi) dn(y)

:J' J EI(xk,l—ixlg2)(xl,1+ixl,2)<¢k|V¢I>

¢} 0

X exp[_(xil +x§,2)/|cs|2]/77|cs|2 dxs,l dxs,2
=0

s

+o0

= %‘. <¢kl Vi) él J‘ xi,j exp(-xi,j/lcklz)/ﬂ'l/zlckl dx ;

—00

= % (¢k| V¢k>lck'2
Remark. If {¢, k=0,1,...} are eigenfunctions of V and if
V¢k:Uk¢k’ k=05 15 (23)
then
<V>=§ Dklck|2 (24)

Proposition 8. The variance of V is

2
az=<V2>—<<V>)2=§<V¢kI V¢k>lcklz—(§ (¢l V¢k>|ck|2) (25)
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Proof. Indeed,

(V2 =E((g| V2u)) =E(Vy| Vi) = J Vo vg) dn ()

“+oo

:% <V¢k| Vi) J (xi,l+x%c,2)

eXp[_(xi,l +xi,2)/|ck|2]/7"|ck|2 dx; y dxy

=§k: <V¢k| V¢k>’ck|2

Taking into account (22), we get (25).
Remark. When the equalities (23) hold, then

2
o =3 ui|ck|2—(§ uklckP)

Generally, we can assign only average properties or expected values
to a system. The above statistical approach on the space of possible states
offers a more elastic prediction of the mean value of an observable V.
Indeed, from the last two propositions, Chebychev’s inequality shows that
the probability of having

KVyy —% (Dl Vol < 1o}

2

is larger than 1—¢ 2, where o is given by (25).

6. STATES REPRESENTED BY FINITE SUMS

Sometimes in practice we are dealing only with a finite number of
eigenfunctions, i.e., we consider states of the form

b= xde
k=0

In such a case we can compute the probability of some events of
interest. Let us denote by X, the random variable representing the square
of the module of the coefficient x; of ¢,. As we know, X, is exponentially
distributed with the mean equal to |¢/]>. In such a case, ¥;_, X, is the
random norm of the generic state ¢ of the system.

Proposition 9. For any N >1, we have

P(,;::O X, <(N+1) kz Icklz) ={1-exp[-(N+D]}"""
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Proof. For any k,
P(|X,— E(X,)|= N StDev(X,))
= P(| X, —|e’| = Nle])
=P0=X,=(N+1)|c])

(N+1)|ck|2
[ expt-wrladylaf dy=1-exp-(v 1)
0

Since the random variables {X;, k=0,1,..., n} are independent, we get
P( Y Xes(N+1) ¥ lckP)
k=0 k=0

=PO0=X,=(N+1|al, k=0,1,...,n)
={l-exp[-(N+1)]}""

Proposition 10. If the numbers |c,|* are distinct, then

P( Xy = 1) =X [ Il (Icklz—lc,»lz)] 1 —exp(=a )Tl
k=0 k=0 | j=0
j*k
(26)
Proof. The random variables {X,, k=0, 1,..., n}areindependent with
the probability densities (4). Then the probability density of X+ X, is

fo*fl(t)=J Jo(x)fi(t—x) dx

= exp(—t/|col’)/ (| erfF =] o)
+exp(=t/|ei)/ (leol* = i)
where the asterisk means the convolution of the two probability densities.
By mathematical induction we get for the probability density of Y ;_, Xi
the expression

n

fo* JIERERE" fn(t)=k§0l:ilo (Icklz_’cjlz)] -1 CXp(—‘t/’Cklz)'Cklz(nil)

(27)
Integrating between 0 and 1, we get (26).

7. SOME CONNECTIONS WITH WIENER AND SIEGEL’S
DIFFERENTIAL SPACE

In a series of papers, Wiener and Siegel (1953, 1955) introduced
statistical ensembles in a so-called ‘“differential space,” which 1s a Hilbert
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space containing a measure for which each coordinate has an independent
normal distribution with mean zero and variance equal to one. More exactly,
according to Wiener and Siegel (1955), but with our notation, the differential
space in the form it takes with respect to a discrete basis {¢,, k=0,1,...}
is an extended Hilbert space including all unnormalizable vectors as well
as the normalizable vectors and such that a measure is associated with a
given volume differential as follows: If ¢ ={x;,, k=0,1,...} is an arbitrary
vector in this space, where the complex coordinate x; corresponding to the
vector ¢, may be written as

X = xk,l + ixk,z

then the weight of probability assigned to the set of points ¢ contained in
a small volume element

I’:[ dxk’l dxk’Z

is equal to

1;[ (2m) " exp(—|x,[*/2) dxy dxi, (28)

There is no clear justification for introducing such a probability distribu-
tion except its nice mathematical properties. At the same time, such a model
does not depend on the available data obtained at the macroscopic scale
after performing some measurements on identically prepared systems. In
fact, it corresponds to the probability distribution (13) when |¢[*=1 for
each k.

Let U be an operator corresponding to an observable for which {¢y, k=
0,1,...} are the eigenfunctions and {u,k=0,1,...} the corresponding
eigenvalues. Let :

& =3 i
k
be the normed state of the system, where

a, ={(dx| &)

Suppose that there are only a finite number, say n, of nonvanishing a;; one
can then apply the results to any extended wave function by going to the
limit n - +00 if necessary. Because the measure defined locally by (28) has
been introduced without any connection to what we know about the quan-
tum system, Wiener and Siegel invented a so-called polychotomic method
in order to define a correspondence depending on ¢ between eigenvalues
1w, and points ¢. Thus, they defined a functional R(¢, ¢) that may take on
only the values u,. Here ¢ is considered as fixed (the objective state of the
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system) and ¢ as variable (a possible state of the system). Specifically,
R(y, ¢) is to be, by definition, that eigenvalue u, for which the ratio of the
magnitudes of the associated quantities x; of ¢ and g, of ¢ is a minimum,
ie.,

R(l!/, ¢) = uj
if and only if
lxj’z/laj|2< |xe]*/ |ael? forall k (29)

This method of constructing R(y, ¢) is called the polychotomic
algorithm. Wiener and Siegel proved that for any given j, the weight of the
region satisfying (29) obtained as the integral of the elementary weight
expression (28), over this region, is just |a;|°, which means that the probability
of those ¢ that satisfy (29) is |a;|*, which, according to Born, represents the
guantum mechanical probability that an experiment will yield the eigenvalue
u; of the operator U. They have interpreted this result as being an explicit
statistical postulate distinct from Born’s statistical interpretation of the wave
function, but equivalent to it as far as final results are concerned. For ease
in writing we can renumber a, so that a@; in (29) becomes a, and the
remaining n — 1 nonvanishing a, receive subscripts from 1 to n — 1 inclusive.
The above result may be obtained in a more general context using the
properties of the probability distributions (13) and (4).

Proposition 11. Let P be the n-dimensional direct product probability
measure induced by the probability density (4). Then,

P{(bel*/ e/ o> (xol/leo) /Mol k=1, ..., n =1} =|aof*
Proof. The event in which we are interested may be written as
C ={lxol*/leol”> 0, [xl*/ew* > (la/lao*) (1x0]*/ o).
k=1,...,n—1}

The random variable |x,[*/|c,|* is exponentially distributed with the mean
1 and the variance 1. Thus, since

n—1

Y |alf=1

k=0
denoting by

Y(s)=J ooexp(—y) dy, s>0

s
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we get

P(C)=Y(0)Y(|as[*yo/ |ac*) - = - Y(|an-1 y0/|a0*)

. j exp(—yo/|ao?) dyo =a”

0

Thus, in our context, let us define the correspondence R as being
R(¢, d)=1u;
if and only if
(% /e /Nl < (x/|ec))/|ae?  forall k (30)

Therefore, the probability that an experiment will yield the eigenvalue u;
of the observable U, which is just the probability of the event (30), is equal
to |a;°, in accordance with Born’s statistical interpretation of the wave
function ¢.

8. CONCLUSIONS

The Schrodinger equation induces a strictly deterministic evolution of
the wave function of a quantum system if the wave function at the initial
time is known. When the initial state of the system cannot be uniquely
determined, we need at least a probability distribution on the class of
possible states of the system at time ¢,. At the macroscopic level, by
performing measurements at time #, on identically prepared systems, we
can get, generally, only mean values. Suppose that we know the mean
probability distribution of the eigenvalues of an operator U whose system
of corresponding eigenfunctions is taken as the basis of the space. Suppose
that at time f, we know either the mean value of the observable U or, for
each k, the mean value |, [° of the probability that the observable U takes
on its eigenvalue u,. This kind of information is not enough for a complete
description of the state of the system at time f#,. Therefore, we construct,
step by step, a probability measure on the set of complex coefficients of all
possible, normed and nonnormed, wave functions of the system. In this
construction we make use of the principle of maximum entropy from
information theory taken as a mathematical tool, which allows us to deter-
mine the most random (the most unbiased) probability distribution subject
to constraints given by mean values of random variables. It is quite remark-
able that by applying such a strategy we obtain the exponential distribution
for the square of the module of each coefficient of the wave function, the
Weibull distribution for the module, and the normal distribution for the
real and the imaginary parts of these coefficients. Once the space of all
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possible wave functions is organized as a probability space, at instant f,,
with a Gaussian probability measure on it, the mean value of any other
observable becomes a random variable whose mean value (the mean of the
mean) and variance (the variance of the mean) may be determined. Also,
because the Schrodinger equation generates a strictly deterministic flow in
the space of possible states, the probability distribution on the state space
at time t, will be conserved, being moved by the flow, at time £, on the
transformed sets of states. Such a probabilistic approach is consistent with
the general pattern met in classical statistical mechanics, but we have here
arandomization process of second degree: a probability measure is construc-
ted on the space of wave functions that are already used for making
probabilistic predictions.

This approach has nothing to do with the “hidden variables” theories.
It simply remakes, at a second degree of randomization, the steps learnt
from the classical statistical mechanics: there is a deterministic flow on the
state space, but at instant ¢, the state is unknown, and we build up the most
unbiased probabilistic model on the space of possible states of the system.
The only available information used in this model is expressed by mean
values: the mean probabilities of the possible values of an observable U,
or, when these mean probabilities are not known, the mean value of this
observable. By extending the principle of maximum entropy to the complex
domain as a technical mathematical tool for constructing the most random
(the most unbiased, the most uniform) probability distribution subject to
constraints expressed by mean values, we organize the state space as a
probability space at instant t,. This probability space is deterministically
propagated in time by the flow induced by the Schrddinger equation.
Luckily, the probability measure induced by this approach on the state
space proves to be very manageable from the computational point of view.
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