
International Journal of Theoretical Physics, Vol. 26, No. 3, 1987 

Probability Space of Wave Functions 

Si lv iu  G u i a s u  1 
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It is well known that in quantum mechanics, when the mean value of an 
observable is given, entropy maximization (von Neumann, Born, Jaynes) can 
be successfully applied for constructing a probability distribution on the set of 
possible values of that observable. In this paper, the entropy maximization 
technique is extended to the complex domain in order to construct an unbiased 
probability measure on the set of all wave functions. In particular, a justification 
and a generalization of the Wiener-Siegel probability distribution of Gaussian 
type in the differential space of wave functions are given. 

1. I N T R O D U C T I O N  

In  c lass ical  s ta t is t ical  mechan ics  the  poss ib le  states are po in ts  in a 
Euc l i dean  space ,  the  phase  space,  and  when  the exact  state is not  known,  
a p robab i l i t y  measure  is cons t ruc ted  on the Bore l -measurab le  set o f  states.  
In  q u a n t u m  mechanics ,  the  state o f  the  system is a wave func t ion  with 
complex  coefficients,  which,  accord ing  to Born,  will  in genera l  pe rmi t  
s ta tements  as to the  p robab i l i t y  o f  f inding different  values  o f  some quant i t ies  
o f  interest .  We may  encoun te r  s i tuat ions  where  we do  not  know the prec ise  
state o f  the  system, name ly  its wave func t ion  at t ime to. In  such a case, as 
in c lass ical  s ta t is t ical  mechan ics ,  we have to organize  the state space ,  i.e., 
the  space  o f  wave  funct ions ,  as a p robab i l i t y  space  and  make  p robab i l i s t i c  
p red ic t ions  on  the poss ib l e  wave funct ions ,  which  themselves  a l low only  
p robab i l i s t i c  in te rpre ta t ions .  There  is here a doub le  in te rvent ion  o f  p robab i l -  
ity. As no t i ced  by  Mess iah  (1969), the  so-ca l led  dens i ty  matr ix  i n t roduced  
by  von N e u m a n n  (1932) in o rde r  to solve this p r o b l e m  p lays  a role  only  
s o m e w h a t  s imi la r  to tha t  o f  the  p robab i l i t y  dens i ty  func t ion  f rom classical  
s ta t is t ical  mechanics .  On the o ther  hand ,  in a series o f  pape r s  Wiene r  and  
Siegel  (1953, 1955, 1966), insp i red  by  the Brownian  mot ion  s tochas t ic  
process ,  postulated a p robab i l i t y  d i s t r ibu t ion  o f  G a u s s i a n  type  on the set 
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of  wave functions, in an attempt to build up a quantum statistical mechanics 
closer to the approach used in classical statistical mechanics for organizing 
the whole state space as a probability space. 

The aim of this paper  is to construct an unbiased probabili ty measure 
on the space of wave functions subject to given data, available at the 
macroscopic scale, by extending the use of  entropy maximization to the 
complex domain. As is well known, the entropy maximization technique 
allows us, in general, to construct the most random or, better, the most 
unbiased probability distribution compatible with given mean values of  
random variables. After the major contributions of  von Neumann  (1932), 
Born (1969), and Jaynes (1957) in this area, many applications of  this 
technique have been made in recent years, as can be seen, for instance, in 
Levine and Tribus (1979) or Smith and Grandy (1985). Generally, these 
contributions have focused mainly on how to construct a probabili ty distri- 
bution on the set of  possible values of  one or several observables of a 
quantum system rather than on the set of  wave functions that are the possible 
states of  the quantum system. 

Let {Xk} be the complex components of  an arbitrary wave function ~b 
with respect to a complete orthonormal set of  eigenfunctions {~bk} corre- 
sponding to the eigenvalues {Uk} of an observable U. We put Xk = Xk,1 + iXk,2 : 
rk exp(iG) .  By performing measurements at the macroscopic scale we can 
generally get only mean values of  random variables. In Section 2, supposing 
that we know the mean probability ]Ckl 2 that the observable U takes on the 
value Uk, the principle of  maximum entropy is successively applied for 
constructing the most unbiased probability distribution on the possible 
values of  Ixk[ 2, rk, Ok, and of the pairs (rk, Ok) and (Xk,1, Xk,2). These results 
are used in Section 3 for inducing a probabili ty measure on the space of 
complex sequences {xk}. Section 4 deals with the common case when the 
only available information is supplied by the mean value of  the observable 
U. An example involving the one-dimensional harmonic oscillator is dis- 
cussed. Once the space of wave functions is organized as a probabili ty 
space, in Section 5, the mean and the variance of the mean value of  an 
observable are obtained. In Section 6, bounds for the random norm of  ~/, 
are given. In Section 7, connections are made between the present approach 
and the statistical ensembles from Wiener and Siegel's differential space. 
The polychotomic algorithm of Wiener and Siegel is obtained in a more 
general context. The last section contains conclusions. 

2. S O M E  USEFUL PROBABILITY DISTRIBUTIONS 

Before applying entropic optimization techniques in quantum statistical 
mechanics let us make some preliminary remarks. I f  {Ok, k = 0, 1 , . . .}  is a 
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complete orthonormal set of  eigenfunctions corresponding to the eigen- 
values {Uk, k = O, 1 , . . .}  of  the observable U and if the normalized wave 
function r is written as 

O =~ ekq)k (1) 
k 

then the expected value of  U corresponding to the state 0 has the form 

= E  uklckl 2 
k 

which entitles us to interpret [Ck] 2 as being the probabili ty tha~ the observable 
U takes on the value uk. Suppose that at the time of preparat ion to the 
dynamical state of  the system is known incompletely and we assign to it a 
statistical mixture of  a finite or countable set of  wave functions {gg,J = 
O, 1, . . .} ,  not necessarily normalized, with the corresponding statistical 
weights {p j , j=O,  1 . . . .  } such that 

p s > 0  ( j = 0 ,  1 , . . . ) ,  Y~ ps = 1 
s 

Taking the eigenfunctions {qSk, k = 0 ,  1 , . . .}  of  the observable U as 
basis, we have 

k 

and, if (- [.) denotes the inner product, let us define 

�9 ps Ic*kl= Ickl=--  (2) 

In particular, the set of  wave functions { %, j=O,  1, . . .}  may be just 
{4~k, k=O,  1, . . .} ,  in which case c:.:= 1 and c:,k = 0  i f j  and k are different, 
which implies 

I<==pk 
Let us take an arbitrary wave function 

6 =• Xkqbk =E rk exp(iOk) 05k (3) 
k k 

where 

rk = IXd and Ok = arg xk 

Of  course, the numbers {[ck[ 2} do not determine the state of  the system at 
time to. They can, however, determine a probabili ty distribution on the 
state space of the system. By performing measurements at the macroscopic 
scale wa can generally get only mean values of  random variables. Let us 



278 " Guiasu 

look at the number IcZ as being the average (or expected) value of Ixd 2 
or r~. Using the principle of  maximum entropy (PME) we can construct 
the most random (the most unbiased, the most uniform) probability distribu- 
tion on the possible values of IxZ subject to the expected value IcZ. After 
that we obtain successively the probability distribution on the values taken 
on by the module rk, the argument Ok, the pair (rk, Ok), and the pair (Xk,1, Xk,2) 
of  the real and imaginary components of  Xk (Xk = Xk, I + ix~2). From here on 
we apply the standard technique for constructing the product measure on 
the set of  sequences {(x~,~, x~,2), (x2,~, x2,2) . . . .  }, each such sequence corre- 
sponding to a well-defined wave function (state) of the system, 

~J ~- E ink,1 -[- ixk.2)~)k 
k 

The following propositions will realize, step by step, this program. 

Proposition 1. The maximum entropy probability distribution on the 
possible values of the square of the module r 2 compatible with the expected 
value [Ckl 2 has the exponential probability density 

fk(y)={~xp(-y/lckl2)/Ic.12 if y > 0  
elsewhere 

(4) 

The mean of  this probability distribution is [Ckj 2 and the variance [Ckl 4. 

Proof. The computation is quite standard. We want to solve the convex 
nonlinear program with two equality constraints: 

max[- f +~ lnA(y) dy ] 
A L Jo 

(5) 

subject to 

o ~ fk(Y) dy = 1 (6) 

fo -~ Yfk(Y) dy = Ickl 2 (7) 

Let H ( f k )  be the entropy of  the probability density fk whose expression 
is given in (5) and a and fl be Lagrange multipliers corresponding to the 
constraints (6) and (7). Taylor's formula tells us that for any t > 0 there is 
z, depending on t, between 1 and t, such that 

Gi t )  = t In t = ( t -  1)+ i t -  1)2/(27 ") 
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Using this formula, we get 

-- H( fk )+ a " l + fllckl 2 

;7 = e x p ( - ~  -/3y) G[fk(y) exp(o~ +/3y)] dy 

-> Io -~ e x p ( - ~  -/3y) [fk(Y) exp(~ +/3y) -- 1] dy 

= 1 - exp(-c~ -/3y) dy (8) 

with equality if and only if 

fk(y)=exp(--o~ --/3y), y > 0  (9) 

in which case the lower bound in (8) is equal to zero. Introducing (9) into 
(6) and (7), after an elementary integration we obtain (4). 

Proposition 2. The values taken on by the module rk are distributed 
according to the Weibull probability density 

gk(z)=[2zexp(-z2/lckl2)/lcgl 2 if z > O  
(10) l0 elsewhere 

Its mean is 7rl/21Ckl/2 and the variance ( 1 -  ~r/4)lckl 2. 

Proof. As r~ is distributed according to (4), we obtain for rk the 
probability density 

gk(z) =fk(Z2) " 2 z = 2 z  exp(-z=/IcklZ)/Ic L =, z > o  

which is the Weibull distribution 

g(z )=[a /3z~- '  exp( -azZ) ,  if z>O  

Lo elsewhere 

with the parameters a = 1/Ickl 2 and 13 =2.  Its mean is 

g = a-1/~r(1  + 1///3) = --- 0.88621ck1 

and the variance 

0 -2  = c~-=/e[r(l+2//3) - F2(1 + 1//3)] = (1 - ~r/4)MI 2-~ 0.21461ck12 

Proposition 3. The maximum entropy probability distribution on the 
possible values of the argument Ok has the uniform probability density 

hk(S)={lo/(2~) 0--< s--<2cr elsewhere (11) 

Its mean is 7r and the variance is equal to 7r2/3. 
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Proof. We can follow the same technique as in the proof  of Proposition 
1 in order to maximize H ( h k )  subject to the only constraint 

Io ~ hk(S) = 1 ds 

and we obtain (11). The mean and the variance may be calculated in the 
usual way. 

Proposition 4. Since the module rk and the argument Ok are indepen- 
dent, their joint probability density is 

~k(Z, S) : gk(Z)hk(S)  

=~zexp( - - z2 /[Ck[2) / zr[Ckr  for z > 0 ,  0--<s--<2~ - 
(12) t0 elsewhere 

Proposition 5. Each component of the independent pair (Xk,1, Xk,2), 
where Xk = Xk~+ iXk,2=rk exp(iOk),  is normally distributed with the mean 
zero and the variance [Ckr/2 , its probability density being 

*lk( V ) = exp(--v2/lCkl2) / crl/2lCkl (13) 

Proof. Let us denote by ~'k the joint probability density of the pair 
(Xk.1, Xk,2), where 

Xk = Xk.l + ixk.2 = rk exp (  iOk ) 

Since 

Xk~I = rk COS Ok, Xk,2 = rk sin Ok 

taking (12) into account, we have 

~k( Xk, l , Xk,2) 

= 

= 

= exp(--r2k/lCk[2)/7rJCkl 2 

= exp[-(x~,l  + X2k,2)/[Ck I2/or[ Ck J 2 

= [exp(--X~l/lek[2)/~rl/2lCkl][exp(--X~,2)/lCkl2)/Trl/2JCk]] (14) 

which is the product of two normal marginal probability distributions 
N(0, pckl2/2). 

Remark .  When [Ckl 2= 1 we obtain 

f k ( y ) = e x p ( - y )  ( y > 0 ) ;  g k ( z ) = 2 z e x p ( - - z  2) (Z>0)  

~?k (V) = e x p ( -  v2)/~r 1/2 
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the joint probabili ty density ffk of  the pair (Xk,1, Xk,2) being the product of  
two normal distributions N(0,1).  In such a case, the joint probabili ty density 

s if z > 0 ,  0<-s-<21r 

to elsewhere 

for (rk, Ok), or the joint probabili ty density 

~k(l)l, / ')2) = e x p [ - ( v ~ +  v2)]/er 

for (Xk:, Xk,2) characterizes the probability distribution of the possible states 
of  the system having the form 

O = Xk6k 

where 

Xk = X~l + ixk,2 = rk exp(iOk) 

3. A PROBABILITY MEASURE ON T H E  STATE SPACE 

Let us introduce the countable set 

A={(k ,  1), (k, 2); k = 0 ,  1 ,2 , . . . }  

and the collection R A of  all real-valued functions to(a),  a ~ A, defined on 
A. Let p~, ....... be the projection of R A onto R" corresponding to a finite 
sequence {al ,  . . . ,  a ,}  of  distinct elements of  A defined by 

p . . . . . . . . .  ( to)  = [ t o ( ~ , ) , . . . ,  t o ( ~ , ) ]  ~ R n 

and let us introduce the o'-field of  all Borel cylinders in R A with index 

{~1,..., ~n}, 

I ......... = { p ~  ....... (B), B c B"} 

where B" is the o--field of  Borel sets in R ~ On the field 

I = ~ Is ,  ....... 

where the union is taken over all finite sequences of  distinct elements of  
A, we define a set function ~? as follows. I f  E c I and E c I ........... having 
the form 

E = p  ......... (B), B ~ B "  

we put 

~I(E)= I XB(x)n ......... (x) dx 
R" 
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where h'B is the indicator  o f  the set B and for a l  = ( k l ,  1 0 , . . . ,  a ,  = (kn, l,) 
and v =  ( V l , . . . ,  vn), we have, for any/~ c {0, 1}, 

- - n / 2 1 ~  1-1 [-1 - - j  1 2 2 "r] . . . . . . . . .  ( I ) )  = "Oaj(1.)j) = 7~ ]t.kt I " "  ICk. e x p  (vi/]%] ) ( 1 5 )  
j = l  

The set funct ion r/ is well defined on I and, according to the Kol- 
mogorov  extension theorem, ~ can be extended uniquely to be a probabil i ty 
measure on the o--field o ' ( I )  generated b y / .  

On the probabil i ty space {R a, t r ( I ) ,  r/} we can define a system of  
r andom variables 

by 

x = { x ( ~ ,  .),  ~ A }  

X ( a , w ) = w ( a )  for w e R  a 

Then, for { a l , . . . ,  a , } c A  and B ~ B "  we have 

7 ( { ( . 0 ;  (.0 e l A, [ X ( O ~ l ,  o.)), . . . , X ( o g n ,  s  e B } )  

= T]({(.o; o) c l A, [o ) (o~1) ,  . . . , (.O(O~n) ] e B } )  

-1 B fa = n ( p  ......... ( ) )=  ~  ......... (v)  dv 

so that  X is a Gaussian system of  independent  r a n d o m  variables. 
The set R A is larger than the set o f  wave functions.  An  element 

O) = (X0,1 , X0,2, X l ,1 ,  Xl ,2 ,  . . . , Xk, 1 , Xk ,2 ,  , . . )  E R A 

corresponds  to the state 

if and only if 

where 

0 = S, (xk,, + ix~,2)r 
k 

(16) 

X k = Xk, 1 "~- iXk. 2 = r k e x p ( i O k )  

We prefer,  however,  to look at any sequence (16) as representing a 
possible (extended) state o f  the system. Writing, for brevity, 

= (Xo,1 , Xo,2, X1,1~ , Xl,2, . � 9  Xk, 1, X k , 2 , . . . )  E R A 

]xk[ 2 = y~ r 2 < +oe (17) 
k k 
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we denote the integral of a function f(~b) with respect to the measure ~7, 
namely 

aA f (O)  dr (O)  

by E ( f ( $ ) ) .  
Of  course, not always does 

Z Ixkl 2-- 1 
k 

but according to the next proposition, this equality is true in the mean. 

Proposition 6. 

E((q'l 0)) = 1 (18) 

Proof. Using (13), we get 

(x~,l + xk,=) 

x exp[-(x~,l  + x~,2)/tck 12]/~1 ck 12 dxk,~ dxk,2 

=21e~1=--1 
k 

Remark. If we denote 

Io O(z) = exp(-x2/2)/(2~r) 1/2 dz 

then the probability of  having a state belonging to the set 

{4,;~=~(xk, l+ixk,2)d~k, akj<--x~<--bkj(j=l,2),forany k} 

is equal to 

I-[ H [ O( 21/2bkj/ lckl) -- O( 21/2 akJ  lckl) ] 
k j 

Following the steps mentioned above, we organize the state space as 
a probability space at time to. On the other hand, the Schr/Adinger equation 
induces a strictly deterministic flow S(to, t) on the state space R A. Supposing 
that the transformation S(to, t) is cr(/)-measurable, the initial probability 
space {R A, i f ( I ) ,  r/} at time to, is transformed into the new probability space 
{R A, tr(I) ,  r /s- l ( t0,  t)} at time t ( t >  to). 
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4. THE CASE W H E N  THE MEAN VALUE OF AN OBSERVABLE 
IS GIVEN 

The above considerations are based on the fact that initially we know, 
from observations, the values of  [Ck[ 2 (k = 0, 1 , . . . ) .  These values have been 
interpreted as the mean values of  the probabilities that the observable U 
takes on the eigenvalues Uk ( k - - O ,  1 , . . . )  corresponding to the eigenfunc- 
tions Sk ( k = 0 ,  1 , . . . ) .  Such an interpretation is in accordance both with 
statistical mechanics and with statistical inference, which have taught us 
that the only way of coping with random events and fluctuations is to start 
from mean values estimated at the macroscopic level. Sometimes the num- 
bers [Ck[ 2 cannot be directly estimated and the only available information 
is given by the mean value of the observable. Suppose that at time to we 
know the mean value ( U} of the observable U. Practically, we measure the 
value taken on by U for a set of  indentical systems and we use these 
observations in order to estimate the mean value (U)  of  U, getting generally 
a confidence interval for ( U}, or testing a statistical hypothesis about (U). 
(This is the simplest strategy to follow; in order to estimate the mean 
probabilities [Ck[ 2, k = 0, 1 , . . . ,  using the relative frequencies of  the values 
Uk, k -- 0, 1 , . . . ,  taken on by the observable U for a set of  identical systems, 
generally we need much more observations than for estimating the mean 
value (U)  of  U.) In such a case, since 

( U} = E uklcgl 2 (19) 
k 

there are many mean probabili ty distributions {[ck[ 2, k = 0, 1 , . . .}  compatible 
with the given mean value (U}. In order to make a choice, a natural strategy 
would be to select from this set of  feasible mean probabili ty distributions 
the most random one (the most unbiased one), treating the possible values 
of  U as uniformly as possible subject to the constraint (19). Therefore, we 
can apply the standard form of the principle of  maximum entropy, used 
by von Neumann (1932), Born (1969), and Jaynes (1957), in order to 
determine the mean probabili ty distribution {[Ck[ 2, k = 0, 1 , . . .}  that maxim- 
izes the entropy 

H([cl 2) : - X  [Ck[ 2 In [Ck[ 2 
k 

subject to 

X led 2= 1 
k 

X uklck[ 2 = (u> 
k 
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Using the same steps as in the proof  of Proposition 1, we obtain the 
known solution (Gibbs's discrete canonical distribution) 

where 

Ickl = exp ( - - / 3uk ) l~ ( / 3 ) ,  k = O, 1 . . . .  

0(/3) = E exp(--/3Uk) 
k 

(20) 

where 

~bk(t) = Nk exp ( - -a t2 /2 )Hk (ce l / 2 t )  

a = 4r  Nk = [ (a /~)~ /2 / (2kk ! )31 /2  

m is the mass of the oscillator, and Hk, denotes the Hermite polynomials. 

6 = E xk4'k 
k 

where {~bk, k = 0, 1 , . . .}  are the eigenfunctions of the energy of the harmonic 
oscillator 

of  the possible states 

with/3 satisfying the equation 

0 ' ( / 3 ) / 0 ( / 3 )  = - (  U)  (21) 

In the particular, but important, case when 

Uk = uo + ku, k = O, 1 , . . .  

equation (21) can be easily solved and we get 

ICkl 2 =  u ( ( U ) - - u o ) k / ( ( U ) - ~ - I , I - - U o )  k+l, k = 0 ,  1 , . . .  

and this expression has to be introduced into the formulas (4)-(15). 
For a one-dimensional harmonic oscillator, for instance, if U is the 

energy of the oscillator, we have 

Uo = lhv,  u = hv  

where v is the frequency of  the oscillator and h is the Planck constant. In 
such a case 

Ickl2 = hv((U)-hu/2)k/((U)+hv/2) k+l, k = 0 ,  1 , . . .  

Replacing these values in (12) and (14), we get the maximum entropy 
probability distribution of the pairs {(rk, Ok), k = 0 ,  1, . . .}  and the corre- 
sponding probability distribution of the pairs {(Xk,1, Xk,2), (k = 0, 1 , . . . )}  of 
the coefficients 

Xk = rk exp{ iOk}  = Xk, 1 "~ ixlq2 
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5. THE MEAN OF THE MEAN VALUE OF AN OBSERVABLE 

Let V be a Hermitic opera tor  corresponding to an observable denoted  
by the same letter. The mean  value of  V corresponding  to the state ~b is 

( V)~ = COl Vq,)/ ( ~,l O) 

In  our  approach ,  since ~O is the generic element o f  a probabil i ty space, the 
mean  (V) becomes  a r a n d o m  variable. For  any subset B e I o f  states we 
define the mean  value o f  V corresponding to the subset B, or on B, as being 

(V)(B) = E((g,I vg,)x,~(g,))/E((~,l q,)xB(4,)) 

if  the two integrals exist. In particular,  if B = R A, then we obtain the fol lowing 
result. 

Proposition 7. 

< v> = < V>(R ~) = Z <~ l  v~k>l c~ I = 
k 

Proof Taking (18) into account ,  we get 

(V)  = ( V)(R A) = E((,/,I Vq,)) = fR ~ (61V,/,) d~ (q,) 

"~" E (Xk,1-  iXk,2)(Xl,1 -k ixt,2)(fbk[ Vr  
k,l 

X f i  expt--(x2,1 + x~,2)/l~,lq/<c~l = dxs,1 axs,2 
$=o 

(~k] v4,k) jE 1 = ~k = _ xkaexp(--x~,JlCk[2)/Trl/=lc~l dxm; 

= E ( 6 ~ I  v~k>lc~l = 
k 

Remark. I f  {~bk, k = 0, 1 , . . . }  are eigenfunctions o f  V and if 

The mean  value of  V on R A (the mean of  the mean)  is 

(22) 

V~k ~--- 1)k~k, k -~- O, 1 , . . .  

then 

< v> -- E ~klckl 2 
k 

Proposition 8. The variance o f  V is 

~2=<V=>-(<V>)Z=E<v~klv~k>Ic~[ 2 -  <6klV~>lckl = 
k 

(23) 

(24) 

(25) 
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Proof. Indeed, 

= E((~,I V2V,>) = E(( VV, I VO)) = IR A (V4,l V4,> an(4,) (V:> 

= Y" (Vd)kl Vrbk) f ~ ~ + 

exp[-(x~,l + x[2)/Ickl2l/ ,~lckl dXk, l dxk,2 

=Z(v  l v  >lc l 2 
k 

Taking into account (22), we get (25). 

Remark. When the equalities (23) hold, then 

Generally, we can assign only average properties or expected values 
to a system. The above statistical approach on the space of possible states 
offers a more elastic prediction of the mean value of an observable V. 
Indeed, from the last two propositions, Chebychev's inequality shows that 
the probability of having 

k 

is larger than 1 - t-:, where o-~ is given by (25). 

6. STATES REPRESENTED BY FINITE SUMS 

Sometimes in practice we are dealing only with a finite number of 
eigenfunctions, i.e., we consider states of the form 

O = E xkq~k 
k=0 

In such a case we can compute the probability of some events of 
interest. Let us denote by Xk the random variable representing the square 
of the module of the coefficient Xk of 4~k. AS we know, Xk is exponentially 

" X distributed with the mean equal to Ickl 2. In such a case, Y~k-o k is the 
random norm of the generic state qJ of the system. 

Proposition 9. For any N >  1, we have 

P(k=O ~ Xk < ( N + I ) k=O ~ [Ck]2) >- {1 -  exp[-(  N + I ) ]} "+ ' 
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Proof For  any k, 

P([Xk- E(Xk)l--< N StDev(Xk))  

:P([X~-lc~l~[<-Nlc~l ~) 

= P ( O -  < Xk --- ( N +  1)lck[ ~) 
f ~N+l)lckl 2 

-- exp(-y/lckl2)/Ickl 2 dy = 1 - e x p [ - ( N  + 1)] 

Since the r a n d o m  variables  {Xk, k = O, 1 , . . . ,  n} are independent ,  we get 

) P Xk<-(N+I) [Ckl 2 
0 k=0 

P(O -< Xk ~ i N +  1)lc~l ~, k = O, 1 . . . .  , n) 

= {1 - e x p [ - ( N  + 1)]} n+l 

Proposition 10. I f  the numbers ]Ck[ 2 are distinct, then 

[ ] P ~o x~ -< 1 -- ~o ~ (Ickl=- [cjl=) - 'E l -  exp(-Ickl-2)]lCk[2" 
j=0 jr 

(26) 

Proof The r a n d o m  variables  {Xk, k = 0, 1 , . . . ,  n} are independen t  with 
the probabi l i ty  densities (4). Then the probabi l i ty  density of  X o + X 1  is 

fo fo* f ,( t)= fo(x)f ,( t-x)  dx 

= exp(-t/Icol=)/(Icl[ 2 -  ICol =) 
+ exp( -  t /lcd2) / (Icol ~ -Icll =) 

where the asterisk means  the convolut ion of  the two probabi l i ty  densities. 
By mathemat ica l  induct ion we get for  the probabi l i ty  density of  Y~=o Xk 
the express ion 

fo* f a * . . . *  fn(t)= k=0 ~ [j=0II (]Ck]2--]r 2(n 1) 
j#k 

In tegra t ing be tween  0 and 1, we get (26). 

(27) 

7. SOME CONNECTIONS WITH WIENER AND SIEGEL'S 
DIFFERENTIAL SPACE 

In a series of  papers ,  Wiener  and Siegel (1953, 1955) in t roduced  
statistical ensembles  in a so-called "differential  space ,"  which is a Hi lber t  
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space containing a measure for which each coordinate has an independent 
normal distribution with mean zero and variance equal to one. More exactly, 
according to Wiener and Siegel (1955), but with our notation, the differential 
space in the form it takes with respect to a discrete basis {~bk, k = 0, 1 , . . .}  
is an extended Hilbert space including all unnormalizable vectors as well 
as the normalizable vectors and such that a measure is associated with a 
given volume differential as follows: I f  0 = {Xk, k = 0, 1 , . . .}  is an arbitrary 
vector in this space, where the complex coordinate Xk corresponding to the 
vector ~bk may be written as 

X k ~ Xk, 1 ~- iXk, 2 

then the weight of  probabili ty assigned to the set of  points 0 contained in 
a small volume element 

[I dxk,1 dx~2 
k 

is equal to 

[ I  (2rr) -1 exp(-Ixkl2/2) dXk,1 dxk,2 (28) 
k 

There is no clear justification for introducing such a probability distribu- 
tion except its nice mathematical  properties. At the same time, such a model 
does not depend on the available data obtained at the macroscopic scale 
after performing some measurements on identically prepared systems. In 
fact, it corresponds to the probability distribution (13) when Ickl 2= 1 for 
each k. 

Let U be an operator corresponding to an observable for which {Ok, k = 
0, 1 , . . .}  are the eigenfunctions and {Uk, k = 0 ,  1 , . . .}  the corresponding 
eigenvalues. Let 

& = E ak4~k 
k 

be the normed state of  the system, where 

Suppose that there are only a finite number,  say n, of  nonvanishing ak; one 
can then apply the results to any extended wave function by going to the 
limit n -~ +oo if necessary. Because the measure defined locally by (28) has 
been introduced without any connection to what we know about the quan- 
tum system, Wiener and Siegel invented a so-called polychotomic method 
in order to define a correspondence depending on & between eigenvalues 
Uk and points @ Thus, they defined a functional R(~O, ~b) that may take on 
only the values Uk. Here & is considered as fixed (the objective state of  the 
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system) and ~ as variable (a possible state of the system). Specifically, 
R(~, ~b) is to be, by definition, that eigenvalue Uk for which the ratio of the 
magnitudes of the associated quantities xk of 0 and ak of ~b is a minimum, 
i.e., 

if and only if 

R(O, ~b) = uj 

I x / l l a /< l x~ l%~ l  ~ for all k (29) 

This method of constructing R(0, q~) is called the polychotomic 
algorithm. Wiener and Siegel proved that for any given j, the weight of the 
region satisfying (29) obtained as the integral of the elementary weight 
expression (28), over this region, is just la j]2, which means that the probability 
of those 0 that satisfy (29) is lajl 2, which, according to Born, represents the 
quantum mechanical probability that an experiment will yield the eigenvalue 
uj of the operator U. They have interpreted this result as being an explicit 
statistical postulate distinct from Born's statistical interpretation of the wave 
function, but equivalent to it as far as final results are concerned. For ease 
in writing we can renumber ak SO that aj in (29) becomes ao and the 
remaining n - 1 nonvanishing ak receive subscripts from 1 to n - 1 inclusive. 
The above result may be obtained in a more general context using the 
properties of the probability distributions (13) and (4). 

Proposition 11. Let P be the n-dimensional direct product probability 
measure induced by the probability density (4). Then, 

P{(Ix~l~/l<~)/l~l~> (Ixoli/lcol2)/laoL k = 1 , . . . ,  n-1} = laol 2 

Proof The event in which we are interested may be written as 

c = {Ixol2/Icol2> o, Ixkl2/Ickl=> (lakl=/laol2)(lxol=/Icol~), 

k = l , . . . , n - 1 }  

The random variable IxklVIc~l 2 is exponentially distributed with the mean 
1 and the variance 1. Thus, since 

n - - 1  

k = 0  

denoting by 

~ oo 

Y(s) = exp(-y)  dy, s>O 
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we get 

P (  C )  = Y (O)Y( la ,12  yo/laol2) . . . Y( la ._ l l2Yo/ lao[  2) 

fo = exp(-Yo/ laol  2) dyo : laol 2 

Thus, in our context, let us define the correspondence R as being 

R(~0, ,~) = uj 

if and only if 

(Ixj l2/Icj l=)/lajl2< ([xkl2/lckl=)/la~l 2 for all k (30) 

Therefore, the probabili ty that an experiment will yield the eigenvalue uj 
of  the observable U, which is just the probabili ty of  the event (30), is equal 
to lajl =, in accordance with Born's statistical interpretation of  the wave 
function ~b. 

8. C O N C L U S I O N S  

The Schr6dinger equation induces a strictly deterministic evolution of 
the wave function of a quantum system if the wave function at the initial 
time is known. When the initial state of  the system cannot be uniquely 
determined, we need at least a probabili ty distribution on the class of  
possible states of  the system at time to. At the macroscopic level, by 
performing measurements at time to on identically prepared systems, we 
can get, generally, only mean values. Suppose that we know the mean 
probabili ty distribution of the eigenvalues of  an operator U whose system 
of corresponding eigenfunctions is taken as the basis of  the space. Suppose 
that at time to we know either the mean value of the observable U or, for 
each k, the mean value Icd 2 of  the probabili ty that the observable U takes 
on its eigenvalue Uk. This kind of information is not enough for a complete 
description of the state of  the system at time to. Therefore, we construct, 
step by step, a probabili ty measure on the set of  complex coefficients of  all 
possible, normed and nonnormed,  wave functions of  the system. In this 
construction we make use of  the principle of maximum entropy from 
information theory taken as a mathematical  tool, which allows us to deter- 
mine the most random (the most unbiased) probabili ty distribution subject 
to constraints given by mean values of  random variables. It is quite remark- 
able that by applying such a strategy we obtain the exponential distribution 
for the square of the module of  each coefficient of  the wave function, the 
Weibull distribution for the module, and the normal distribution for the 
real and the imaginary parts of  these coefficients. Once the space of all 
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possible wave functions is organized as a probability space, at instant to, 
with a Gaussian probabili ty measure on it, the mean value of any other 
observable becomes a random variable whose mean value (the mean of the 
mean) and variance (the variance of the mean) may be determined. Also, 
because the Schr6dinger equation generates a strictly deterministic flow in 
the space of possible states, the probability distribution on the state space 
at time to will be conserved, being moved by the flow, at time t, on the 
transformed sets of  states. Such a probabilistic approach is consistent with 
the general pattern met in classical statistical mechanics, but we have here 
a randomization process of  second degree: a probabili ty measure is construc- 
ted on the space of wave functions that are already used for making 
probabilistic predictions. 

This approach has nothing to do with the "hidden variables" theories. 
It simply remakes, at a second degree of randomization, the steps learnt 
from the classical statistical mechanics: there is a deterministic flow on the 
state space, but at instant to the state is unknown, and we build up the most 
unbiased probabilistic model on the space of  possible states of  the system. 
The only available information used in this model is expressed by mean 
values: the mean probabilities of  the possible values of an observable U, 
or, when these mean probabilities are not known, the mean value of this 
observable. By extending the principle of  maximum entropy to the complex 
domain as a technical mathematical  tool for constructing the most random 
(the most unbiased, the most uniform) probabili ty distribution subject to 
constraints expressed by mean values, we organize the state space as a 
probability space at instant to. This probability space is deterministically 
propagated in time by the flow induced by the Schr6dinger equation. 
Luckily, the probabili ty measure induced by this approach on the state 
space proves to be very manageable from the computational point of  view. 
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